evolutionary products . . .

... for rebuilding, resurfacing and protecting all types of fluid flow machinery, equipment and structures.

METALCLAD

CETCHAIOY MCLTAC (Advanced Composite)

Apply by Brush, Roller or Flexible Applicator

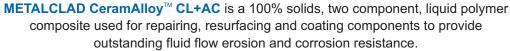
Requires No Heat **Unlimited Shelf Life** 100% Solids

Safe & Simple To Use

High Performance Polymer Composite for resurfacing and protecting all types of fluid flow components from aggressive erosion and corrosion damage.

Outstanding erosion/corrosion resistance!

Repairs Damaged Equipment — Protects New Components.


The Most Advanced Polymer Composite Coating System Available!

When mixed, METALCLAD CeramAlloy™ CL+AC is a viscous liquid. CL+AC cures to a hard, ceramic-like material with an extremely smooth surface finish.

Heat Exchanger Tube Sheets & Water Boxes, Pumps, Valves & Pipework, Housings & Tanks, Cooling Towers, etc.

Corporation

Toll Free: 888-4-ENECON

Tel: 516 349 0022 · Fax: 516 349 5522

6 Platinum Court · Medford, NY 11763-2251

Technical Data				
Volume capacity per	kg. 36 in³	/ 592 cc		
Mixed density	0.061	0.061 lbs per in ³ / 1.69 gm per cc		
Coverage rate per kg @ 12 - 15 mils		6 ft² / 1.4 m²		
Shelf life	Indefi			
Volume solids	100%			
Mixing ratio	Base	Activator		
By volume	3.3	1		
By weight	6	1		

Cure Ti	mes				
	oient erature	Working Life	Machining Light Load	Full Mechanical	Chemical Immersion
41°F	5°C	4 hrs	48 hrs	96 hrs	10 days
59°F	15°C	2 hrs	24 hrs	48 hrs	5 days
77°F	25°C	1 hr	12 hrs	24 hrs	3 days
86°F	30°C	40 min	8 hrs	20 hrs	2 days

Physical Properties	Typical Values		Test Method
Compressive strength	13,500 psi	945 kg/cm ²	ASTM D-695
Flexural strength	8,000 psi	560 kg/cm ²	ASTM D-790
Izod impact strength	1.3 ft lbs/in	0.69 j/cm	ASTM D-256
Hardness - Shore D	85		ASTM D-2240
Tensile Shear Adhesion			
Steel	4000 psi	280 kg/cm ²	ASTM D-1002
Aluminum	2500 psi	175 kg/cm ²	ASTM D-1002
Copper	3000 psi	210 kg/cm ²	ASTM D-1002
Stainless steel	4100 psi	287 kg/cm ²	ASTM D-1002
Surface resistivity	1 x 10 ¹⁵ ohms		ASTM D-257
Volume resistivity	1 x 10 ¹⁵ ohm/cm		ASTM D-257
Dielectric constant			ASTM D-150
Dielectric strength	652 volts/mil		ASTM D-115
Breakdown voltage	6.1 Kv		ASTM D-115

Chemical Resistance				
Chomital Nosisianto	M (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Acetic acid (0-10%) EX	Methyl alcohol G			
Acetic acid (10-20%) G	Methyl ethyl ketone G			
Acetone G	Nitric acid (0-10%) EX			
Aviation fuel EX	Nitric acid (10-20%) G			
Butyl alcohol EX	Phosphoric acid (0-5%) EX			
Calcium chloride EX	Phosphoric acid (5-10%) G			
Crude oil EX	Potassium chloride EX			
Diesel fuel EX	Propyl alcohol EX			
Ethyl alcohol G	Sodium chloride EX			
Gasoline EX	Sodium hydroxide EX			
Heptane EX	Sulfuric acid (0-10%) EX			
Hydrochloric acid (0-10%) EX	Sulfuric acid (10-20%) G			
Hydrochloric acid (10-20%) G	Toluene G			
Kerosene EX	Xylene EX			
EX - Suitable for most applications including immersion.				
G - Suitable for intermittent contact, splashes, etc.				

Your Local ENECON® Fluid Flow Systems Specialist

Using CeramAlloy [™]CL+AC

Surface Preparation - METALCLAD CeramAlloy[™] CL+AC should be applied only to clean, dry and well roughened surfaces.

- Remove all loose material and surface contamination and clean with a suitable solvent which leaves no residue on the surface after evaporation such as acetone, MEK, isopropyl alcohol, etc.
- 2. Clean / roughen surface by abrasive blasting.
- If necessary, apply moderate heat and/or allow the component(s) to "leach" to remove ingrained contaminants.
- Thoroughly roughen surfaces by abrasive blasting to achieve a "white metal" degree of cleanliness and an anchor pattern of 3 mils.

Note: In situations where adhesion is not desired, such as when making molds and patterns or to ease future disassembly, apply a suitable release agent (mold release compound, paste wax, etc.) to the appropriate surfaces.

Mixing & Application - For your convenience, the METALCLAD CeramAlloy™ CL+AC Base and Activator have been supplied in precisely measured quantities. Simply pour the entire contents of the Activator container into the Base container and, using a spatula, putty knife or other appropriate tool, mix thoroughly until the CeramAlloy™ CL+AC reaches a uniform, streak-free color.

Apply the mixed material to the prepared surface using a stiff-bristled brush, applicator or roller. As a guide, an even thickness of approximately 12-15 mils per coat should be obtained. A minimum two coat application is required.

Overcoating should ideally be performed when the previously applied coat is just surface tacky; and certainly within 8 hours of the previous coat.

Health & Safety - Every effort is made to insure that ENECON® products are as simple and safe to use as possible. Normal industry standards and practices for housekeeping, cleanliness and personal protection should be observed.

Please refer to the detailed MATERIAL SAFETY DATA SHEETS (MSDS) supplied with the material (also available on request) for more information.

Cleaning Equipment - Wipe excess material from tools immediately. Use acetone, MEK, isopropyl alcohol or similar solvent as needed.

Technical Support - The ENECON® engineering team is always available to provide technical support and assistance. For guidance on difficult application procedures or for answers to simple questions, call your local ENECON® Fluid Flow Systems Specialist or the ENECON® Engineering Center.

All information contained herein is based on long term testing in our laboratories as well as practical field experience and is believed to be reliable and accurate. No condition or warranty is given covering the results from use of our products in any particular case, whether the purpose is disclosed or not, and we cannot accept liability if the desired results are not obtained.

Copyright © 2009 by ENECON® Corporation. All rights reserved. No part of this work may be reproduced or used in any form or by any means - graphic, electronic or mechanical including photocopying, recording, taping or information storage and retrieval systems - without written permission of ENECON® Corporation.